Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise.
نویسندگان
چکیده
Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the auditory nerve that were sampled in the same preparations. MOC neurons also differed from afferent fibers in having less saturation of response. Some MOC neurons had responses that continued to increase even at high sound levels. Differences between MOC and afferent responses suggest that there is convergence in the pathway to olivocochlear neurons, possibly a combination of inputs that are at the characteristic frequency (CF) with others that are off the CF. Opposite-ear noise almost always facilitated the responses of MOC neurons to sounds in the main ear, the ear that best drives the unit. This binaural facilitation depends on several characteristics that pertain to the main ear: it is higher in neurons having a contralateral main ear (contra units), it is higher at main-ear sound levels that are moderate (approximately 65 dB SPL), and it is higher in neurons with low discharge rates to main-ear stimuli. Facilitation also depends on parameters of the opposite-ear sound: facilitation increases with noise level in the opposite ear until saturating, is greater for continuous noise than noise bursts, and is usually greater for noise than for tones. Using optimal opposite-ear facilitators and high-level stimuli, the firing rates of olivocochlear neurons range up to 140 spikes/s, whereas for moderate-level monaural stimuli the rates are <80 spikes/s. At high sound levels, firing rates of olivocochlear neurons increase with CF, an increase that may compensate for the known lower effectiveness of olivocochlear synapses on outer hair cells responding to high frequencies. Overall, our results demonstrate a high MOC response for binaural noise and suggest a prominent role for the MOC system in environments containing binaural noise of high level.
منابع مشابه
Single olivocochlear neurons in the guinea pig. II. Response plasticity due to noise conditioning.
Previous studies have shown that daily, moderate-level sound exposure, or conditioning, can reduce injury from a subsequent high-level noise exposure. We tested the hypothesis that this conditioning produces an increased activity in the olivocochlear efferent reflex, a reflex known to provide protection to the cochlea. Guinea pigs were conditioned by a 10-day intermittent exposure to 2-4 kHz no...
متن کاملENDOGENOUS RELEASE OF OPIATES BY REPETITIVE ELECTRICAL FIELD STIMULATION IN THE GUINEA-PIG AND RAT ILEAL LONGITUDINAL MUSCLE
The effect of repetitive electrical field stimulation and the response of the guinea-pig and rat ileal longitudinal muscle to single pulse stimulations was examined. Single pulse field stimulation produced twitch contraction which was inhibited by repetitive field stimulation (10 Hz, 40V, 0.5 msec for 5 m). This inhibition was largely, though never completely, reversed by naloxone. Contrac...
متن کاملResponse properties of single units in the dorsal nucleus of the lateral lemniscus of decerebrate cats.
The dorsal nucleus of the lateral lemniscus (DNLL) receives afferent inputs from many brain stem nuclei and, in turn, is a major source of inhibitory inputs to the inferior colliculus (IC). The goal of this study was to characterize the monaural and binaural response properties of neurons in the DNLL of unanesthetized decerebrate cat. Monaural responses were classified according to the patterns...
متن کاملResponses of neurons in the inferior colliculus to binaural masking level difference stimuli measured by rate-versus-level functions.
The psychophysical detection threshold of a low-frequency tone masked by broadband noise is reduced by < or = 15 dB by inversion of the tone in one ear (called the binaural masking level difference: BMLD). The contribution of 120 low-frequency neurons (best frequencies 168-2,090 Hz) in the inferior colliculus (ICC) of the guinea pig to binaural unmasking of 500-Hz tones masked by broadband nois...
متن کاملDirectionality derived from differential sensitivity to monaural and binaural cues in the cat's medial geniculate body.
Azimuth tuning of high-frequency neurons in the primary auditory cortex (AI) is known to depend on binaural disparity and monaural spectral (pinna) cues present in broadband noise bursts. Single-unit response patterns differ according to binaural interactions, strength of monaural excitatory input from each ear, and azimuth sensitivity to monaural stimulation. The latter characteristic has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 6 شماره
صفحات -
تاریخ انتشار 1998